TDI Module Two

Database Management System Policies and Requirements

This module is the second of four modules that describe the use of the Trusted
Database Interpretation (TDI) of the Trusted Computer System Evaluation
Criteria (TCSEC) for database product evaluation and certification. The basic
terms and concepts presented in the TDI are summarized in TDI Module One.
This module describes security policies and database requirements that can be
supported by a trusted database management system (DBMS). TDI Module
Three describes various architectural approaches for building a trusted DBMS.
TDI Module Four describes other database security issues that are not covered
by the TDI but are important issues in database security, such as inference,
aggregation, and database integrity.

Module Learning Objectives

This module describes how an MLS DBMS can enforce Mandatory and
Discretionary Access Control on the objects that it protects, as well as the
supporting policies of Identification and Authentication (I&A) and Audit. The
student will be introduced to the types of objects commonly encountered in
trusted databases as well as the types of operations subject to DAC controls
and the MAC requirements for specific database operations. Upon completion
of this module the student should:

1) understand the issues surrounding MAC policies and their
enforcement in a trusted DBMS.

2) understand what DAC policies are normally enforced and what
policy areas are left up to the DBMS developer.

3) understand how I&A and auditing must be done in a trusted DBMS
to meet the TCSEC requirements.

4) be familiar with the issues surrounding the enforcement of both
secrecy and integrity policies in a trusted DBMS.

5) be familiar with the security issues surrounding the need for the
standard database capabilities of concurrency and recovery.

Overview

There are a wide variety of security policies that can be enforced by a trusted
DBMS. This module concentrates on security policies that are required by the
TCSEC (i.e., MAC, DAC) and integrity policies, since they are so critical to
databases. It also covers supporting policies such as I&A and Audit that are
levied on DBMSs to support these security policies.

The fundamental concepts of MAC and DAC for databases are similar to that
for operating systems (OS)s. The differences lie in the granularity and types of
objects that must be protected and the relationships that exist between these
objects. In OSs, objects generally are not tightly coupled with other objects,

-1- April 1997

TDI Module Two

with the possible exception of directories and the files they contain. In contrast,
most database objects are related to and nested within other objects in the
database. These relationships can make enforcing effective access control
policies a challenge.

Before beginning, some terminology needs to be defined as a basis for
discussion. These terms are from the relational model [JCOD70]. There are
several other database models that could be used to design a DBMS. However,
because of the prevailing use of this model in industry, this terminology will be

used here. The ANSI Standard database language SQL is based on the
relational model.

In the relational model, a database is viewed as a collection of information. The
structure of the database is described by a schema. The schema contains the
definitions of the tables and views of the database. The actual data of the
database is stored in tables. These tables are described by table definitions
which are part of the database schema. A table definition defines the number
of attributes that are present in the table, the name of each of these attributes,
and what type of information can be stored in each attribute. The actual
information stored within a table is organized into tuples. A tuple is composed
of a set of elements, one element per attribute. Tuples are sometimes called
database rows in the literature. The tables, tuples, and elements that are
stored in the database make up what are called the base relations in the
database. They are what is actually stored in the database. These terms are
depicted in Figure 2-1. The relational model also supports

Attribute
Table *
Flit # Date Dest
—+ | 553 10.13.92 BW]]
1612 1 $FQ
917 6.2.91 IRAR

Tuple

Element

Figure 2-1: Relational Model Terminology

the ability to create views (named queries) of the data in the base relations.
Views are defined by view definitions, which are part of the database schema.
A view is a way of looking at the information stored in the database in a
different way from how it is stored in the base relations. Views do not change

-92- April 1997

TDI Module Two

the underlying structure of the base relations. When access through a view is
requested, queries (as defined by its definition) are sent to the DBMS to
retrieve the information that can be seen through the view. Changes made to
data seen through a view alter the underlying base relations.!

MAUC in a Trusted DBMS

A database contains table definitions, view definitions, and tables. Table and
view definitions are typically stored in the database in tables owned by the
DBMS. Database objects must also be protected by the security policy enforced
by the DBMS, which must include MAC at B1 and above. The granularity of
this protection is left up to the DBMS designer. This policy must take into
account the relationships that exist between these objects and how they are
stored in the database. These topics are discussed in the following sections:

MAC Granularity

The MAC policy identifies atomic objects to which access will be controlled. The
granularity of MAC is based on the smallest distinguishable component of the
database which is labeled. This can be the database, table, tuple, attribute, or
element level. Typically, tuple or element level labeling is done in order to
provide sufficient granularity. If the database is chosen as the atomic level,
then everything within it would be a single level. This degenerate case is
equivalent to a single level database stored in files on a trusted operating
system. Choosing tables as the atomic level provides the ability to differentiate
the data to some degree, but in general, is an insufficient level of granularity
to be useful. Element level MAC controls provide the greatest flexibility.
However, because of their complexity and the processing and storage overhead
required to support element level labeling, tuple level labeling is frequently
provided instead.

Regardless of the level of granularity selected, all objects must be labeled
either explicitly or implicitly. If the granularity selected is above the element
level (e.g., table, attribute, tuple), then all objects contained within the labeled
object (e.g., tuple, element) and any objects they contain are implicitly labeled
with the label of the containing object. For example, if the granularity chosen
is at the table level, then all tuples contained in the table, and all elements
contained in those tuples are implicitly marked with the label of the table.
Objects that contain labeled objects may be labeled to indicate the minimum
level required to access the container. Names and definitions of tables, views
and entire databases must also be considered objects and labeled accordingly.
The following discusses the labeling options for each object type:

L. The ability to alter data through a view is constrained based on the structure of the view and the
underlying table. These constraints are described in [TDAT89].

-3- April 1997

TDI Module Two

Elements

Elements are labeled if MAC is provided at the granularity of the element.
Otherwise they are implicitly labeled with the label of the containing tuple,
attribute or table depending on the granularity of MAC supported.

Attributes

Attributes define columns of a table. A labeling scheme could choose to label
the columns of the table by assigning a label to each attribute, thereby
labeling all elements within that column. However, this scheme is generally
not used because it does not provide the type of labeling that is used to
model real world relationships. Because of this, attribute level labeling is
not discussed further within this module.

Tuples

Tuples are labeled if MAC is provided at the granularity of the tuple. If
elements are labeled then tuples do not need explicit labels because their
sensitivity can be derived from the sensitivities of the elements they
contain. Since a tuple and all of its elements are created simultaneously
(i.e., all elements must exist even though they may have null values) then
the implied label can always be computed. If MAC is done at the granularity
of the table, then the tuple is implicitly labeled with the label of the table it
is contained in.

Tables

If MAC is done at the granularity of tables, each table is labeled and all
tuples and elements contained in the table are implicitly labeled at that
level. However, MAC granularity is normally provided at the tuple or
element level.

Table Definitions

Table definitions must be labeled if they can be created at more than one
level. These labels also provide a minimum level needed to access the table.
The meaning of a table definition label is discussed more in the section
entitled Database and Table Labels.

Database

When a database is created it is basically an empty container with a name.
The name must be labeled as required by the MAC policy. This label defines
the minimum sensitivity level required to access the database. This is
discussed in more detail in the following section.

Database and Table Labels

The following hypothetical implementation illustrates the typical meanings of
and relationships between the sensitivities of databases and the tables they
contain. Other database implementations are possible.

-4 - April 1997

TDI Module Two

When a database is created it must be labeled. Since a database is initially
empty, the only thing the label refers to is the metadata defining the database.
To be able to read/open the database, a user’s current session level must
dominate this database label. Whenever a new table is created, the table
definition must be marked at the user’s current session level because the
session level may be more sensitive than the sensitivity label of the database
name. In the operating system realm, any modifications to a file by a more
sensitive process would require that the file be upgraded to the sensitivity of
the user doing the modification. However, since the granularity of MAC for a
trusted DBMS is finer than that in a OS, a label can be placed on what was
modified (i.e., the new table definition) rather than upgrade the entire
container (the database). One can see that the label on the database indicates
the minimum sensitivity of information that can be stored in the database,
rather than reflecting the overall sensitivity of the information stored in the
database. This is an important point, as it is different from what file labels
mean, for example. The same argument holds true for the label on each table
definition. Access to tables is granted only to users whose current session level
dominates the sensitivity of the table definition. Therefore, any tuples inserted
into the table must dominate the level of the table definition. The meaning of
these labels and how they work is very similar to directory labels in multilevel
file systems.

Normally, the maximum sensitivity of information that could be stored in the
database is system-high. However, it is sometimes desirable to be able to
explicitly define the maximum sensitivity of information that could be stored
in a database or table. A trusted DBMS can support this capability by
providing range labels for the database and/or each table, rather than just
minimums. This would allow an explicit sensitivity range to be defined for the
database and each table. This concept is similar to multilevel devices as
described in the TCSEC. Minimum sensitivity labels are usually set equal to
the session level of the user creating the database or table. The maximum can
be set to any value which dominates the minimum, up to system-high.

Relationship Between Levels of Storage Objects

Based on the previous discussion it should be reasonably clear what
relationships must exist between the sensitivity levels of the storage objects in
the database. For clarity, these relationships are summarized here. This
section describes current practice, but may not necessarily be true for all
designs.

Database - The database label (or minimum label) will be dominated by the
labels of all the table definitions, tuples and elements in the database. If the
database has range labels, all table definitions, tuples and elements in the
database will be within this range.

Table - The table definition label (or minimum label) will dominate the
database label (or minimum label) and will be dominated by the maximum
label if one exists. If the table has range labels, the range must reside within
the range for the database.

-5- April 1997

TDI Module Two

Tuple - If tuples are labeled, they will dominate or lie within the range of the
containing table definition’s label(s).

Element -If elements are labeled, they will dominate or lie within the range
of the containing table definition’s label(s).

Trusted Processes

To avoid confusing the issue, the topic of trusted processes has been avoided
during the previous discussion. However, it is important to note that the
relationships previously described are not guaranteed to hold true if regrading
or other trusted operations within the database are allowed. If something is
regraded, inserted, or modified by a trusted process these relationships may
not hold for the new or modified object. Tables, tuples or elements could be
marked lower than the containing database or table. These items would then
be readable, but could not be modified by untrusted processes because any
modifications to them would be considered a write-down. If regrading causes
these relationships to not hold true, it is not necessarily a violation of the
security policy. For example, a trusted process could downgrade a tuple in a
Secret table to Confidential. Once done, all untrusted processes must be at
least Secret to gain access to the table, which prevents them from modifying
the Confidential tuple because it would be considered a write down from Secret
to Confidential. In general, these relationships should hold true for the
majority of the information that is stored in the database. It is also possible for
the security policy of the specific DBMS to require that these relationships hold
in order to simplify the possible states of the database.

Label Constraints in Attribute Definitions

As stated before, a table definition defines the allowed contents of a table in
terms of the number of attributes and each attribute’s name and type. In a
trusted DBMS, typically, additional attributes are automatically created by
the DBMS based on the granularity of MAC provided and included within the
table definition to hold the labels that mark the table’s tuples or elements. As
described previously, the labels of all tuples or elements within a table must
dominate the sensitivity of the table definition. A DBMS could also provide the
capability to define within a definition additional constraints on these label
attributes. These constraints could be for specific values or a range of values,
just like the values of normal attributes can be constrained within a table
definition. For example, a table could be labeled Secret (which would set the
minimum level for all tuples and elements in the table to Secret) while placing
an additional constraint within the definition that required the label
associated with all elements of the defined attribute ‘Payload’ to be at least Top
Secret.

Views

Views are alternate ways of looking at the data stored in the database. A view
definition is basically a query that has been given a name, which can then be
used to refer to that particular view again in the future. Creation of a view
definition or its execution does not alter the way the data is stored in the
underlying data (base relations). Like all other objects, view definitions must

-6 - April 1997

TDI Module Two

be labeled. These labels should dominate the labels of all tables accessed by the
view in order to ensure that the view executes successfully. Otherwise the view
may not be able to access the underlying base relations.

The label assigned to a view is up to the author of the view, based on the
author’s session level when the view is created. Views should be labeled based
on the aggregate of the information that they access. If the author of a view
believes that what is revealed by the view may be more sensitive than any
single piece of information accessed by the view, then the view can be marked
at a higher level indicative of the sensitivity of the aggregate of the data it
accesses. This would restrict access to this view to only those users that are
authorized to access the higher level data. However, if less cleared users can
develop their own views, then this would not prevent a less cleared user from
building an identical view that reveals the same information. Typically,
however, databases are set up so only certain individuals can modify the basic
structure of the database as well as develop new views. The classification of
views is discussed in more detail in chapter 21 of [TLUN92].

View Based MAC

Since views are labeled, access to a view is restricted to those users that are
cleared to the level of the view. This brings up the idea that MAC for a DBMS
could be enforced based on the labels on views alone. The idea is that no labels
would be provided on the base relations and all labeling would be provided by
the labels on the view definitions [JWIL82, JGARS88]. There are a number of
problems with this idea that have not been solved by research to date [Chapter
7 of TLUN92].

1) Assurance:Because of the complexity involved in providing high
assurance for a DBMS based on view based MAC (since the view
definition mechanism must be trusted, as well as the views developed by
the individuals designing or maintaining the database), it would be very
difficult to provide this capability with sufficient assurance. The main
problem is that view definitions are typically written by database
designers and administrators (DBMS users) rather than by DBMS
product vendor personnel who go through a rigorous assurance process
when they are developing a trusted DBMS for evaluation against the
TDI.

2) Information Flow:More importantly, since views inherently overlap one
another (i.e., can access data using more than one view), data can be
implicitly labeled at different levels based on the labels for the views
that can access data. These multiple labels for the same data create
significant information flow problems which would clearly violate the
MAC policy.

These as well as other reasons indicate why MAC is not done based on views
alone. This is important to note since DAC frequently is provided based on
views. The rationale for allowing this is described in the section on DAC.

-7- April 1997

TDI Module Two

Labeling Query Results

Queries (and views) allow users to extract information from the DBMS.
Queries can only access information at a level that is dominated by the user’s
current session level. The results of these queries are returned to users as a set
of data. In a trusted DBMS, these results are usually labeled. These labels
indicate the sensitivity of the information returned to the user executing the
query.

Correct generation of the labels for query results is not straightforward. Based
on a strict interpretation of the MAC policy, these labels should be based on not
only the label of the data returned by the query, but also the labels of all
information used during the computation of the results. This information
includes all data stored in the database that is accessed during the query as
well as all queries/views used to compute the result. The resulting high water
mark of all information accessed during the query should be returned as the
minimum label of the query results in order to ensure that sensitive
information is not inadvertently leaked. This is necessary because a user may
be returned a result which is incorrectly marked at a level lower than the
information that it actually reveals. The information should be marked at a
higher level if the query outcome is affected by more sensitive intermediate
information. The revelation of this incorrectly marked data results in a MAC
violation because sensitive information is revealed to an insufficiently cleared
individual.

If this strict interpretation of MAC is enforced by the DBMS, query results
labels will tend to float upward as they are contaminated by ‘touching’
sensitive information during a query. The final results of a query may not
depend on the contents of more sensitive information that was accessed during
the query. Therefore, the results may not necessarily be more sensitive even
though sensitive data was accessed. Much research has gone into how query

results (as well as all data) should be labeled. Some thoughts on this area are
presented in [Chapter 12 of TLUN92].

DAC in DBMSs

DAC for DBMSs is much more straightforward than MAC because of the
existence of SQL and its requirements for DAC in databases. For DAC, DBMSs
must enforce the same basic TCSEC requirement of “controlling access
between named users and named objects”. According to the TCSEC, the
specific types of controls that must be provided are left up to the designer.
However, because of the prevalence of SQL compliance, virtually all vendors of
trusted DBMSs provide products which comply with SQL, in addition to
meeting the requirements of the TCSEC. However, a vendor is not required to
be SQL compliant to meet the requirements of the TCSEC. It should also be
noted that there are ongoing SQL enhancements. However, this discussion on
DAC presents the SQL requirements for DAC and describes what aspects of
DAC are not specified by SQL and are left up to the DBMS vendor. This
discussion on DAC is based on the description of security features in SQL in
[TSQL89] and [TDATS89].

-8- April 1997

TDI Module Two

The following areas of DAC are specified by SQL:

e DAC on tables for individual users with the following privileges:
SELECT, INSERT, DELETE, UPDATE, and REFERENCE, with or
without the GRANT option which allows users to select whether a user
possessing a privilege can pass this privilege on to another user.

e DAC on Views.
SQL does not specify:
e DAC for access to a database.

* The roles to be provided, the privileges to be assigned to these roles, or
how they are to manage and how they are affected by the DAC
mechanism.

Table Level DAC

In SQL, DAC is provided at the table level. Table level DAC in SQL is provided
at the granularity of SELECT, INSERT, DELETE, UPDATE, and
REFERENCE to individual users and to individual columns within the table
for UPDATE and REFERENCE. Privileges can be granted by the owner of a
table. For those that are interested, the semantics and syntax of these
privileges are described in Appendix A of this module. In addition, these
privileges can be granted with a ‘WITH GRANT OPTION’. If a privilege is
granted with this option, then the user receiving the privilege also gains the
privilege to pass the privilege just granted on to other users. If this option is
not set, then the user cannot pass the privilege on. Other privileges can be (and
usually are) provided within a specific DBMS implementation.

Since table and view definitions are usually stored in tables as part of the
database schema, the privileges mechanism for tables can be used to protect
the database schema itself. Initially, when a database is created, only the
owner of the database has any privileges to access or modify the database. All
access rights to the database must be granted explicitly by the owner of the
database, who is wusually the database administrator. Therefore, the
administrator can grant or not grant, the rights to create new tables or views,
or modify existing ones, to other users.

Privileges are defined as part of the database schema using the GRANT clause
and normally stored within a privilege table. How to revoke a privilege or set
of privileges is currently not defined in SQL. Some implementations of SQL,
such as IBM’s DB2, include a REVOKE command. This revokes that user’s
access to the specified table or view. However, if the user had the ‘WITH
GRANT OPTION’, any privileges that the user gave to other users are still
intact. DBMS developers usually provide tools to help track down additional
privileges that may exist. However, they are not required by the SQL standard.

-9- April 1997

TDI Module Two

View Based DAC

As stated previously, views provide an alternate way of looking at the data in
the underlying base tables, or in other views. In SQL, the creator of a view
must have access to all the tables or views accessed by the view when the view
is created. Once created, access to a view may be granted by the owner to other
users in the same manner that access to base tables can be granted. If a user
has been granted access to a view, he can use the view to access the underlying
base relations as defined by the view, even though the user may not have the
privilege to access the base tables or views directly.

Views allow owners or administrators of data to grant users access to the
information they control in very specific ways. Views can hide specific
attributes, tuples or elements, or return statistical data based on the
underlying data, thereby hiding the exact values that are stored. Views can
also combine information from other tables to present information in different
ways. The flexibility of views and their definitions allows DAC to be provided
at a very fine level of granularity. To restrict the propagation of access rights
through views, the creation of views is usually restricted to the owners or
administrators of the data.

Database Level DAC

SQL does not specify how access to the entire database is to be controlled. The
details are left up to the implementor of the DBMS. Potential access types that
could be provided include ‘Full Access’, ‘No Access’, ‘Read Only’, and ‘Update
Only’. Initial access to the database can also be used to assign a specific role to
an individual based on the account they use to access the database. These
details are all left up to the DBMS developer.

Roles

Another area that SQL leaves up to the implementor of the DBMS is what roles
are to be provided and how these roles affect the management and enforcement
of the DAC policy. Roles such as Database Administrator and Database
Security Officer are typically provided. These roles are usually granted certain
privileges which allow them to manage and/or override the DAC mechanism
during the execution of their duties. The exact details of these capabilities are
left up to the DBMS developer. The TCSEC and TDI require specific roles to be
provided by the DBMS at level B2 and above. Thus, compliance with SQL is not
necessarily sufficient for a DBMS to meet the TCSEC requirements for DAC at
these higher assurance levels.

Identification and Authentication in DBMSs

As stated in the TDI, the I&A requirements for a trusted DBMS are identical
to that required for a trusted operating system (OS). The basic requirement is
to identify and authenticate individual users when they first request access to
the DBMS and then to use the authenticated identity as the basis for all access
control decisions. This process is basically the same for an OS as it is for a
DBMS. What makes it somewhat different is not in the policy area but in the
implementation of the policy because of the fact that the DBMS usually runs

10 - April 1997

TDI Module Two

on top of an underlying OS. If a user has been authenticated to the OS, then
this authentication data, the user’s current session level, and any user
privileges could be shared between the OS and the DBMS. However, sharing is
not required by the TDI. The TDI allows the OS and DBMS TCBs to maintain
separate I&A databases and mechanisms. These implementation details are
discussed more in TDI Module Three.

Audit in DBMSs

The TDI provides additional detail on the audit requirements for a Trusted
DBMS on pp. 44-46. It states that the DBMS must be able to audit “all
mediated accesses which are visible to the user. That is, each DAC policy
decision and each MAC policy decision shall be auditable.” Operations by
trusted software which are totally transparent to the user need not be
auditable. This is the same as the TCSEC requirement. However, because of
the granularity and number of ‘objects’ that are being protected by the DBMS
TCB (tables, tuples, elements) and the richness of the discretionary access
controls (as described above), a DBMS must audit most database operations
that a user can perform while using a DBMS.

These requirements require large amounts of audit data to be generated and
stored by the DBMS TCB. The TDI allows security audit data to be kept
separate from the security audit data generated by an underlying OS. It also
allows the DBMS to generate multiple audit logs within its own domain. It
must be possible to correlate all DBMS and OS logs, which can be done in real-
time or after the fact. The TDI also allows for a DBMS to provide “a selectable
capability to reduce the number of audit records generated in response to
queries that involve many access control decisions”. This allows database
administrators to reduce the amount of audit data generated to an acceptable
level.

Integrity Policies

Integrity policies are very important to trusted DBMSs even though they are
not required by the TDI/TCSEC and are not heavily scrutinized during a TDI
evaluation by NSA. A concise discussion of this topic is difficult because of the
many different meanings people have/envision when the term ‘integrity’ is
used. Integrity can be defined as ensuring that the database is internally
consistent (with some a priori set of criteria) and correctly reflects the real
world (again, based on some set of criteria). This usage of integrity is also
referred to as data integrity.

The following are examples of data integrity ‘policies’ that are typically
provided by a DBMS:

- entity integrity
- referential integrity
- integrity constraints (data type, set of values, compatibility, etc.)

11 - April 1997

TDI Module Two

In SQL, entity integrity is the requirement that all primary keys of a table are
non-null and unique. Whenever a new tuple is inserted, or a primary key is
updated, a check is made that ensures that the key value is not duplicated. In
SQL, referential integrity requires that all foreign keys reference an existing
primary key. A foreign key, is an element that references (matches) the
primary key of another tuple. A referential integrity constraint is
automatically invoked whenever a foreign key is created. Integrity constraints
can also be explicitly specified for each attribute in their table definition. These
constraints can specify data type, specific values or range of values, uniqueness
properties, and other constraints. These policies and others are discussed in
[JWIS90].

Another integrity policy that could be enforced is the Biba “strict integrity”
policy as described in [JBIB77]. This is a label-based (mandatory) approach
that is sometimes provided by trusted operating systems. If provided by the
underlying OS, the DBMS may also need or desire to support this policy as
well. The basic premise of this policy is to keep low integrity subjects and their
data from contaminating higher integrity data. This mechanism can be
provided by using integrity levels and categories in a manner similar to
mandatory security levels and categories.

Another example of integrity is described in the Clark-Wilson model using
“triples” as an enforcement mechanism and the concept of “separation of
duties” which involves the concept of roles. In this model, each user is assigned
specific “transactions” that the user can execute on specific sets of data based
on the user’s role or job function. To provide separation of duties, the
administrator of the system must ensure that different individuals are
assigned the rights to execute different transactions for the same set of data.
Thus, for a given operation, which takes multiple transactions to complete,
different individuals would have to be involved to complete the entire
operation. This separation of duties is intended to reduce fraud and abuse. This
type of policy fits naturally into a DBMS where DBMS operations
(transactions) are to be separated and controlled.

Many other integrity policies are possible. However, it is beyond the scope of
this course to go into more detail in this area. The important thing to note here
is that, because of the nature of database applications, integrity requirements
typically arise that must be supported by the DBMS. These integrity
requirements, which are not required by the TCSEC, may have serious
security ramifications as described in the following section.

Integrity vs. Security

Providing integrity and/or security are important aspects of database
management. However, because of the nature of DBMS integrity and security
requirements, similarities as well as conflicts arise when both policies are
simultaneously enforced.

Security policies (both MAC and DAC) which can prevent access or restrict

access to read-only, inherently provide a certain level of integrity because
modify access can be restricted. Thus some integrity is provided by preventing

212 April 1997

TDI Module Two

unauthorized modifications. However, restricting who can perform
modifications is not always sufficient to ensure that certain integrity
requirements are met. Therefore, integrity policies are developed which levy
additional requirements such as those described previously.

One of the main problems when trying to enforce MAC on a DBMS is that
entity integrity enforcement is difficult without creating covert signaling
channels. If a lower level tuple is created with the same primary key as a
higher level tuple, the system must prevent this in order to preserve the
uniqueness of the keys (entity integrity). This however reveals the existence of
the higher level tuple, which is a covert channel. Trusted DBMS researchers
solved this problem with the concept of polyinstantiation. Primary keys are
expanded to include the tuple label in addition to the original primary key.
Therefore the two tuples can now be distinguished by their sensitivity labels.
In this manner multiple tuples with the same original primary key but
different sensitivity labels can exist simultaneously, hence the term
polyinstantiation. Polyinstantiation solves the entity integrity problem, but
creates other integrity problems because multiple tuples describing the same
entity can now exist and it may not be clear which tuples accurately reflect the
real world. This is currently a research topic and is discussed in more detail in
TDI Module 4.

Integrity constraints on attributes that cross access classes can also create
covert channels. For example, if a table describing cargo planes places a limit
of 500 lbs on its cargo and it is carrying both Unclassified and Secret cargo, an
uncleared user trying to add additional cargo may learn that more sensitive
cargo is on board if the system prevents him from loading up to 500 lbs of
Unclassified cargo. If this constraint is enforced across access classes then less
cleared users will be able to determine the exact weight of the sensitive cargo
based on how much Unclassified cargo can be stored on the plane. This type of
problem is discussed in more detail in the inference section of TDI Module 4.

These and other issues regarding integrity vs. security need to be addressed by
the developer of the DBMS. The tradeoffs between providing flexibility to the
users, e.g., can polyinstantiate, can define integrity constraints across access
class boundaries, need to be balanced against the security requirements. These
areas may not be solvable by the DBMS developer for all potential applications.
DBMSs can provide the capability for these mechanisms to their users and
then leave it up to the users to decide what they want. This removes the burden
of decision from the DBMS developer and provides more flexibility than a fixed
solution. Methods for resolving some security vs. integrity conflicts are
discussed in [JMAI91].

Concurrency and Recovery
The ability to support concurrent users and to recover from aborted or
interrupted transactions are standard capabilities for DBMSs today. These

capabilities must be carefully considered when being supported by a trusted
DBMS. Concurrency controls (i.e., locking) can cause significant covert

13- April 1997

TDI Module Two

channels to be introduced within the database. Recovery from aborted
transactions can also introduce covert channels.

Concurrency controls inherently cause users to affect one another by delaying
or blocking completion of transactions until other transactions are completed.
If these delays can be detected by a user (i.e., because of time or because
rollbacks are initiated) then some information about one user can be
transmitted to another. In a multilevel system, this information flow could be
in violation of the MAC policy, thus creating a covert channel. Some research
has been done in providing covert channel free locking mechanisms. One such
approach is described in [JMCD92].

Transactions can abort for any number of reasons, only some of which indicate
that there was an actual failure in the DBMS. Most transactions abort when
the transaction detects a condition which the author of the transaction believes
will interfere with correct completion of the transaction. System crashes can
also interfere with the completion of transactions. It is the DBMS’s
responsibility to restore the database to the same state it was in before the
transaction began. The multilevel security requirement makes it more difficult
to correctly accomplish this task without introducing covert channels during
the recovery process. One approach to secure recovery controls is presented in
[JKAN92].

Required Readings

The required readings are supplied as part of the source material for the
module. These readings, and the module overview, provide all the material
covered by the module test questions.

DTDI91 National Computer Security Center, Trusted DBMS Interpretation of the
Trusted Computer System Evaluation Criteria (TDI), NCSC-TG-021,
Version-1, April 1991.

Sections TC-5.2.1, IR-2.1, & IR-3 describes security policy requirements as
interpreted for databases. Appendix A presents a summary of
interpretations by class, including the security policy requirements.

TLUN92 Research Directions in Database Security, Teresa Lunt, Editor, Springer
Verlag, 1992. [Chapters 19 and 21]

Chapter 19 discusses security policies in trusted DBMS. Sections 19.2.4,
19.3, and 19.4 discuss specific problems that typically are present in DBMS
security policies. Chapter 21 talks about the classification of metadata and
views.

Other Related Readings

TLUN92 Research Directions in Database Security, Teresa Lunt, Editor, Springer
Verlag, 1992. [Chapters 7, 11, and 12.]

14 - April 1997

TDI Module Two

JMAI91 B. Maimone, and R. Allen, “Methods for Resolving the Security vs. Integrity
Conflict”, Proceedings of the Fourth RADC Database Security Workshop,
April 1991.

JWIS90 Simon Wiseman, “The Control of Integrity in Databases”, Fourth IFIP WG
11.3 Workshop on Database Security, Sept. 1990.

JBIB77 K. J. Biba, “Integrity Considerations for Computer Systems”, Mitre TR-
3153, Mitre Corp., Bedford, MA, April 1977.

JCLAS87 D. D. Clark and D. R. Wilson, “A Comparison of Commercial and Military
Computer Security Practices”, 1987 IEEE Symposium on Security and
Privacy, 1987.

JCOD70 Codd, E. F., “A Relational Model of Data for Large Shared Data Banks”,
Communications of the ACM, June 1970.

JDENS88 D. Denning, et al, “The SeaView Security Model”, 1988 IEEE Symposium on
Security and Privacy, 1988.

JGARS88 C. Garvey and A. Wu, “ASD_Views”, 1988 IEEE Symposium on Security
and Privacy, 1988.

JKAN92 I. Kang and T. Keefe, “Recovery Management for Multilevel Secure
Database Systems”, Proceedings of Sixth IFIP WG 11.3 Working Conference
on Database Security, August 1992.

JLUNS88 T. F. Lunt, et al, “Final Report Vol. 1: Security Policy and Policy
Interpretation for a Class Al Multilevel Secure Relational Database

System”, Computer Science Laboratory, SRI International, Menlo Park,
California, 1988.

JMCD92 J. McDermott and S. Jajodia, “Orange Locking, Channel-Free Database
Concurrency Control Via Locking”, Proceedings of Sixth IFIP WG 11.3
Working Conference on Database Security, August 1992.

JWIL82 J. Wilson, “Views as the Security Objects in a Multilevel Secure Relational
Database Management System”, 1988 IEEE Symposium on Security and
Privacy, 1988.

DREC91 National Computer Security Center, A Guide to Understanding Trusted
Recovery in Trusted Systems, NCSC-TG-022, Version 1, 30 Dec 1991.

TDAT89 C. J. Date, A Guide to the SQL Standard, 2nd Edition, Addison Wesley,
1989.

TSQL89 Database Language - SQL with Integrity Enhancement, ANSI X3.135-
1989, American National Standards Institute, NY, NY, 1989.

_15- April 1997

TDI Module Two

Appendix A: DBMS DAC as specified by SQL
4,15 Privileges2

A privilege authorizes a given category of <action> to be performed on a specified
table or view by a specified <authorization identifier>. The <action>s that can be
specified are INSERT, DELETE, SELECT, UPDATE, and REFERENCES.

An <authorization identifier> is specified for each <schema> and <module>.

The <authorization identifier> specified for a <schema> shall be different from the
<authorization identifier> of any other <schema> in the same environment. The
<authorization identifier> of a <schema> is the “owner” of all tables and views defined
in that <schema>.

Tables and views are designated by <table name>s. A <table name> consists of an
<authorization identifier> and an <identifier>. The <authorization identifier>
identifies the <schema> in which the table or view designated by the <table name>
was defined. Tables and views defined in different <schema>s can have the same
<identifier>.

If a reference to a <table name> does not explicitly contain an <authorization
identifier>, then the <authorization identifier> of the containing <schema> or
<module> is specified by default.

The <authorization identifier> of a <schema> has all privileges on the tables and
views defined in that <schema>.

A <schema> with a given <authorization identifier> may contain <privilege
definition>s that grant privileges to other <authorization identifier>s. The granted
privileges may apply to tables and views defined in the current <schema>, or they
may be privileges that were granted to the given <authorization identifier> by other
<schema>s. The WITH GRANT OPTION clause of a <privilege definition> specifies
whether the recipient of a privilege may grant it to others.

A <module> specifies an <authorization identifier>, the <module authorization
identifier>, which shall have the privileges specified for each <SQL statement> in the
<module>.

2. From FIPS Pub 127-1 p. 14, which is a copy of ANSI Standard X3.135-1989.

- 16- April 1997

TDI Module Two

Format3

<privilege definition> ::=
GRANT <privileges> ON <table name>
TO <grantee> [{, <grantee> }...]
[WITH GRANT OPTION]

<privileges> ::=
ALL PRIVILEGES
| <action> [{, <action> }...]

<action> ::=
SELECT | INSERT | DELETE
| UPDATE [(<grant column list>)]
| REFERENCES [(<grant column list>)]

<grant column list> ::=
<column name> [{, <column name> }...]

<grantee> ::=
PUBLIC | <authorization identifier>

3. This BNF notation for the syntax of a GRANT is from FIPS Pub 127-1, p. 68.

-17 -

April 1997

